好文章,需要你的鼓励
大模型时代,玛丽·米克尔(Mary Meeker)的名字可能大家不一定熟悉,但是在互联网时代,这位被可被誉为“互联网女皇”的。她是美国风险投资家和前华尔街证券分析师,专注于互联网及新兴技术领域。玛丽·米克尔(Mary Meeker)发了一份340页的《人工智能趋势报告》,粗粗看了一下,并没有非常轰动的观点,但是数据比较全面
微软研究院推出的"基于最优奖励基线的在策略强化学习"(OPO)算法解决了大语言模型强化学习中的两大问题:训练不稳定和计算效率低。通过严格遵循在策略训练和引入理论最优奖励基线,OPO无需额外的辅助模型或复杂正则化项,就能实现更稳定的训练。在数学推理基准测试中,OPO不仅表现优异,还保持了更低的策略偏移和更高的输出多样性。这项研究证明,有时最有效的解决方案不是增加复杂性,而是回归基础原则并进行深入的理论思考。
毫无疑问,Agent,也就是智能体已经预定了今年的最火AI关键词。不知道明年会不会是AGI呢,既然OpenAI和Anthropic的预测都是在2027年左右。而在Agent领域,非常有发言权的一位就是吴恩达。LangChain前不久的开发者活动Interrupt上,LangChain创始人Harrison Chase邀请了吴恩达专门做了一场对话
SWE-bench-Live是微软与上海人工智能实验室联合开发的持续更新基准测试平台,解决了现有代码修复评估工具的数据老化、覆盖有限和人工依赖问题。核心创新是REPOLAUNCH自动化流水线,能从GitHub抓取2024年后的1,319个真实问题,自动配置Docker环境。研究发现最先进的AI代码助手在该平台上的解决率仅为19.25%,远低于静态基准测试表现,尤其在处理多文件修改和大型代码库时存在明显局限。