基于虚拟工作站的多GPU性能让设计师和工程师能够将其创作变为现实并加快其设计流程
作者:Anne Hecht
全球最强大的虚拟工作站再上一层楼。Quadro虚拟数据中心工作站(Quadro vDWS)的最新增强功能可实现虚拟工作站的最高性能,从而加速严苛的图形和计算工作流程。
具有多GPU性能的Quadro vDWS使专业人员能够在任何设备上远程办公,也使其设计和IP可在数据中心得到保护。
基于远程虚拟工作站开展工作的创意专业人士能够借助两个Tesla V100 Tensor Core GPU的叠加性能,以高出使用单一Tesla V100时94%的速度,渲染引人入胜、照片级写实的可视化效果。与仅基于CPU的系统相比,基于两台Tesla V100的系统让工程师和设计师能够以7倍的速度完成仿真。
最新版NVIDIA Virtual GPU软件通过实时迁移等功能确保了可靠性和易管理性。2018年10月发布的NVIDIA vGPU(Quadro vDWS和GRID软件)的新功能包括:
针对多GPU、VMware VMotion和NGC容器的支持预计将于秋末推出。支持NVIDIA Tesla T4的NVIDIA vGPU软件预计于2018年底推出。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。