HPE、IBM、Oracle、开源社区、创业公司采用RAPIDS,显著提升端到端预测数据分析能力
德国慕尼黑—GTC Europe—2018年10月10日—NVIDIA发布了一款针对数据科学和机器学习的GPU加速平台,该平台已为多个行业领先者所采用,并能帮助超大规模公司以前所未有的速度分析海量数据并进行精准的业务预测。
RAPIDS开源软件帮助数据科学家显著地提高了工作绩效,对于这些数据科学家来说,种种业务挑战应接不暇,其中包括预估信用卡诈骗、预测零售存货及理解顾客购买行为等等。众多公司——无论是Databricks和Anaconda等开源社区先驱还是Hewlett Packard Enterprise、IBM和Oracle等技术领袖——在GPU对数据分析的重要性方面日益达成共识,并对RAPIDS表现出越来越多的支持。
据分析师估计,面向数据科学和机器学习的服务器市场每年价值约为200亿美元,加上科学分析和深度学习市场,高性能计算市场总价值大约为360亿美元。
“数据分析和机器学习是高性能计算市场中最大的细分市场,不过目前尚未实现加速,“NVIDIA创始人兼首席执行官黄仁勋在GPU技术大会主旨演讲中发布RAPIDS时表示,”全球最大的行业均在海量服务器上运行机器学习算法,目的在于了解所在市场和环境中的复杂模式,同时迅速、精准地做出将直接影响其决策的预测。
黄仁勋表示,“得益于CUDA及其全球生态系统以及与开源社区紧密合作,我们已创建了RAPIDS GPU加速平台。该平台已与全球最流行的数据科学库及工作流无缝整合,可加速机器学习。如同深度学习一样,我们正在不断地为机器学习提速。”
RAPIDS已为GPU加速分析和机器学习提供了一整套开源库,数据可视化即将是下一个目标。RAPIDS由NVIDIA工程师与主要的开源贡献者在过去两年的合作成果。
RAPIDS第一次为数据科学家提供了他们需要用来在GPU上运行整个数据科学管线的工具。最初的RAPIDS基准分析利用了XGBoost机器学习算法在NVIDIA DGX-2系统上进行训练,结果表明,与仅有CPU的系统相比,其速度能加快50倍。这可帮助数据科学家将典型训练时间从数天减少到数小时,或者从数小时减少到数分钟,具体取决于其数据集的规模。
RAPIDS构建于Apache Arrow、pandas和scikit-learn等流行的开源项目之上,为最流行的Python数据科学工具链带来了GPU提速。为了将更多的机器学习库和功能引入RAPIDS,NVIDIA广泛地与开源生态系统贡献者展开合作 ,其中包括Anaconda、BlazingDB、Databricks、Quansight、scikit-learn、Ursa Labs负责人兼Apache Arrow缔造者Wes McKinney以及迅速增长的Python数据科学库pandas等等。
McKinney表示,“作为GPU加速的数据科学平台,RAPIDS是由Apache Arrow驱动的新一代的计算生态系统。NVIDIA与Ursa Labs的合作将加速Arrow核心数据库的创新步伐,并有助于大幅提升分析及特征工程的绩效。”
为了推动RAPIDS的广泛应用,NVIDIA正努力将RAPIDS与Apache Spark进行整合,后者是分析及数据科学方面领先的开源框架。
Databricks联合创始人、首席技术官兼Apache Spark创始人Matei Zaharia表示,“在Databricks公司中,我们对RAPIDS在加速Apache Spark工作量方面的潜力感到非常兴奋。我们目前开展的多个项目都意在将Spark更好地与本地加速器进行整合,其中包括借助Project Hydrogen实现的Apache Arrow的支持以及GPU调度。我们相信,就扩大我们客户数据科学及AI工作量来说,RAPIDS将是全新的、振奋人心的机会。”
各个行业技术领先的企业均是NVIDIA GPU加速平台及RAPIDS的率先应用者。
沃尔玛执行副总裁兼首席技术官Jeremy King表示,“NVIDIA的GPU加速平台及RAPIDS软件极大改进了我们使用数据的方式,帮助我们实现了复杂模式大规模地运行,同时进行更加精准的预测。RAPIDS的应用得益于NVIDIA和沃尔玛工程师之间的深度合作,我们准备继续推进这种合作关系。”
此外,一些全球领先的技术公司也力图通过全新的系统、数据科学平台和软件解决方案支持RAPIDS,包括Cisco、DELL EMC、联想、NERSC、NetApp、Pure Storage、SAP和SAS等。
供货
全套RAPIDS开源库现在即可在http://www.rapids.ai上获得,代码经Apache许可公布。容器化RAPIDS版本现在即可在NVIDIA GPU Cloud container registry上获得。
好文章,需要你的鼓励
韩国科学技术院研究团队提出"分叉-合并解码"方法,无需额外训练即可改善音视频大语言模型的多模态理解能力。通过先独立处理音频和视频(分叉阶段),再融合结果(合并阶段),该方法有效缓解了模型过度依赖单一模态的问题,在AVQA、MUSIC-AVQA和AVHBench三个基准测试中均取得显著性能提升,特别是在需要平衡音视频理解的任务上表现突出。
这项研究利用大语言模型解决科学新颖性检测难题,南洋理工大学团队创新性地构建了闭合领域数据集并提出知识蒸馏框架,训练轻量级检索器捕捉想法层面相似性而非表面文本相似性。实验表明,该方法在市场营销和NLP领域显著优于现有技术,为加速科学创新提供了有力工具。
un?CLIP是一项创新研究,通过巧妙反转unCLIP生成模型来增强CLIP的视觉细节捕捉能力。中国科学院研究团队发现,虽然CLIP在全局图像理解方面表现出色,但在捕捉细节时存在不足。他们的方法利用unCLIP生成模型的视觉细节表示能力,同时保持与CLIP原始文本编码器的语义对齐。实验结果表明,un?CLIP在MMVP-VLM基准、开放词汇语义分割和视觉中心的多模态任务上显著优于原始CLIP和现有改进方法,为视觉-语言模型的发展提供了新思路。
这项研究介绍了RPEval,一个专为评估大语言模型角色扮演能力而设计的新基准。研究团队从法国里尔大学开发的这一工具专注于四个关键维度:情感理解、决策制定、道德对齐和角色一致性,通过单轮交互实现全自动评估。研究结果显示Gemini-1.5-Pro在总体表现上领先,而GPT-4o虽在决策方面表现出色,但在角色一致性上存在明显不足。这一基准为研究人员提供了一个可靠、可重复的方法来评估和改进大语言模型的角色扮演能力。