思科今天推出了一款针对人工智能进行优化的系统,成为最近一家在该领域有所动作的数据中心设备制造商。
思科今天公布的UCS C480 ML M5是一款四机架单元服务器,专门用于运行处理器密集型深度学习工作负载,属于思科的UCS统一计算系统家族。UCS系列服务器是将计算资源与网络和存储功能以及管理自动化软件结合到一起的系统。
C480 ML M5比该系列的很多其他系统具有更强大的性能。它采用2个最新一代英特尔Xeon Scalable CPU,以及8个Nvidia Tesla V100 GPU,同时思科选择了高配版SMX2芯片,该芯片包括32GB板载内存。
据Nvidia官方数据显示,单个V100的性能是传统CPU的47倍,可用于深度学习工作负载。该芯片在Apple Watch的模片上装载了217亿个晶体管,这些晶体管被组织成5700个处理核心,包括640个专门针对人工智能设计的Tensor核心。
在思科的新设备中,V100芯片使用Nvidia专门为此类系统开发的NVLink技术进行通信。反过来,企业可以为该系统配备最多24个直连磁盘或闪存驱动器。6个C480 ML M5驱动器插槽支持基于高速NVMe互连技术的闪存设备。
这些系统为思科提供了潜力,此前思科的业务不仅受到戴尔和HPE等硬件供应商的攻击,还受到AWS和微软等云服务提供商的压力,这次推出的系统让思科有潜力提供更有竞争力的数据中心产品,Gartner研究主管Chirag Dekate这样表示。他说,目前还没有其他硬件提供商提供8 GPU的服务器。
他说:“对于思科而言,它最大限度地减少了数据中心的阻塞,让思科能够继续吸引用户使用思科的平台。”同样,新系统使思科的客户“能够在不向数据中心引入新的多样性的情况下,进行深度学习。”尽管许多企业是在公有云基础设施上启动他们的人工智能项目,但他表示,大多数企业将重要的项目移至他们自己的、更具成本效益的基础设施上,例如思科的。
思科希望确保这款设备能够与企业首选的人工智能工具配合使用。为此,思科正在与Hortonworks合作,为该设备验证Hadoop分析平台最新的3.1版本。该版本为流行的深度学习框架(例如TensorFlow)提供支持。
此外思科还支持Kubeflow开源工具,可使TensorFlow与Kubernetes软件容器编排引擎兼容。软件容器使企业能够轻松地跨不同类型的环境移动工作负载,这意味着客户可以将本地AI模型迁移到云,反之亦然。
Dekate说,所有这些都特别重要,因为思科的一个优势是拥有比一些竞争对手更深入的软件提供商及其他合作伙伴生态系统。
就在推出C480 ML M5的一个月之前,Dell EMC也推出了一款针对人工智能工作负载的类似服务器,最多可配置4个V100芯片。早些时候,Pure Storage公司推出的AIRI结合了5个Nvidia DGX-1服务器,每台服务器配备8个V100。
思科将在今年晚些时候上市C480 ML M5。
好文章,需要你的鼓励
CoreWeave发布AI对象存储服务,采用本地对象传输加速器(LOTA)技术,可在全球范围内高速传输对象数据,无出口费用或请求交易分层费用。该技术通过智能代理在每个GPU节点上加速数据传输,提供高达每GPU 7 GBps的吞吐量,可扩展至数十万个GPU。服务采用三层自动定价模式,为客户的AI工作负载降低超过75%的存储成本。
IDEA研究院等机构联合开发了ToG-3智能推理系统,通过多智能体协作和双重进化机制,让AI能像人类专家团队一样动态思考和学习。该系统在复杂推理任务上表现优异,能用较小模型达到卓越性能,为AI技术的普及应用开辟了新路径,在教育、医疗、商业决策等领域具有广阔应用前景。
谷歌DeepMind与核聚变初创公司CFS合作,运用先进AI模型帮助管理和改进即将发布的Sparc反应堆。DeepMind开发了名为Torax的专用软件来模拟等离子体,结合强化学习等AI技术寻找最佳核聚变控制方式。核聚变被视为清洁能源的圣杯,可提供几乎无限的零碳排放能源。谷歌已投资CFS并承诺购买其200兆瓦电力。
上海人工智能实验室提出SPARK框架,创新性地让AI模型在学习推理的同时学会自我评判,通过回收训练数据建立策略与奖励的协同进化机制。实验显示,该方法在数学推理、奖励评判和通用能力上分别提升9.7%、12.1%和1.5%,且训练成本仅为传统方法的一半,展现出强大的泛化能力和自我反思能力。