思科今天推出了一款针对人工智能进行优化的系统,成为最近一家在该领域有所动作的数据中心设备制造商。
思科今天公布的UCS C480 ML M5是一款四机架单元服务器,专门用于运行处理器密集型深度学习工作负载,属于思科的UCS统一计算系统家族。UCS系列服务器是将计算资源与网络和存储功能以及管理自动化软件结合到一起的系统。
C480 ML M5比该系列的很多其他系统具有更强大的性能。它采用2个最新一代英特尔Xeon Scalable CPU,以及8个Nvidia Tesla V100 GPU,同时思科选择了高配版SMX2芯片,该芯片包括32GB板载内存。
据Nvidia官方数据显示,单个V100的性能是传统CPU的47倍,可用于深度学习工作负载。该芯片在Apple Watch的模片上装载了217亿个晶体管,这些晶体管被组织成5700个处理核心,包括640个专门针对人工智能设计的Tensor核心。
在思科的新设备中,V100芯片使用Nvidia专门为此类系统开发的NVLink技术进行通信。反过来,企业可以为该系统配备最多24个直连磁盘或闪存驱动器。6个C480 ML M5驱动器插槽支持基于高速NVMe互连技术的闪存设备。
这些系统为思科提供了潜力,此前思科的业务不仅受到戴尔和HPE等硬件供应商的攻击,还受到AWS和微软等云服务提供商的压力,这次推出的系统让思科有潜力提供更有竞争力的数据中心产品,Gartner研究主管Chirag Dekate这样表示。他说,目前还没有其他硬件提供商提供8 GPU的服务器。
他说:“对于思科而言,它最大限度地减少了数据中心的阻塞,让思科能够继续吸引用户使用思科的平台。”同样,新系统使思科的客户“能够在不向数据中心引入新的多样性的情况下,进行深度学习。”尽管许多企业是在公有云基础设施上启动他们的人工智能项目,但他表示,大多数企业将重要的项目移至他们自己的、更具成本效益的基础设施上,例如思科的。
思科希望确保这款设备能够与企业首选的人工智能工具配合使用。为此,思科正在与Hortonworks合作,为该设备验证Hadoop分析平台最新的3.1版本。该版本为流行的深度学习框架(例如TensorFlow)提供支持。
此外思科还支持Kubeflow开源工具,可使TensorFlow与Kubernetes软件容器编排引擎兼容。软件容器使企业能够轻松地跨不同类型的环境移动工作负载,这意味着客户可以将本地AI模型迁移到云,反之亦然。
Dekate说,所有这些都特别重要,因为思科的一个优势是拥有比一些竞争对手更深入的软件提供商及其他合作伙伴生态系统。
就在推出C480 ML M5的一个月之前,Dell EMC也推出了一款针对人工智能工作负载的类似服务器,最多可配置4个V100芯片。早些时候,Pure Storage公司推出的AIRI结合了5个Nvidia DGX-1服务器,每台服务器配备8个V100。
思科将在今年晚些时候上市C480 ML M5。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。