Splunk中国区总经理严立忠
如今,无论是从事IT运维、敏捷开发,还是DevOps(开发运营),甚至站点可靠性的工程师们(SRE),都在不断提及一个概念——可观察性(Observability)。为什么他们都在关注可观察性?可观察性在IT领域有哪些深层的含义?在开始探讨这些问题之前,我们需要先了解可观察性到底是什么?
理论上来讲,可观察性是从外部输出知识中推断所获得,可理解为衡量一个系统内部状态的方法。如同IT领域的众多新概念(比如DevOps), 可观察性第一次被提出是在工业领域。当时的可观察性被描述成为一种系统的外部监测属性,比如设备操作者可以查看系统中隐藏的各个流程。
举个例子,水处理厂的操作员如果无法看到水管的内部状况,就无法监测到水的正常流动,流动的方式,以及水质的干净程度。但在管道内可以添加可观察性的工具——流量计和传感器后,状况就截然不同,这些工具将通过遥测连接到仪表板,帮助操作员能够完全掌握管道中水流的情况,并及时根据状况进行调整,大大提高了工作效率。
可观察性也已被快速地引入到 IT 领域,并广泛应用于软件服务行业。尤其是在软件开发工程师编写代码的时候,所使用是就是具有可观察性的测量和遥测应用程序。它可以帮助运维团队获得:
随着AI技术的涌现,企业要想获得商业的成功,只靠新的数据、图表、KPI或者项目仪表盘是远远不够的。可观察性才是企业获得真正商业价值的“抓手”。企业无论在面对实时问题还是事件分类,关闭DevOps反馈回路亦或提前预防问题,都要收集可观察性的数据,并与其它监测的数据一起进行分析处理,并运用机器学习的方式生成自动响应,那么将监测与可观察性、机器学习和预测分析的高级数据集合后,则就拥有了Gartner所定义的“AIOps”,即在AI时代,让IT运维具备机器学习和算法的能力。
当AIOps有了可观察性数据后,可帮助企业:
DevOps中一个重要的概念是强调研发与运维的无缝配合形成一个整体,能给企业带来更大的业务灵活性,使企业能够更快地响应客户行为、市场变化和新技术。而可观察性带来了企业团队文化的转变,在可观察性的语境下,研发是主体,需要主动考虑如何将应用的关键指标以什么形式暴露出去;而之前大部分研发只有在应用出现故障的时候,才会考虑在什么位置加个日志,将研发与运维真正协作统一。
作为一个运维智能平台,Splunk是机器数据的引擎。Splunk通过监控和分析客户的点击流、交易数据、信息安全事件和网络活动,Splunk帮助客户获得机器生成数据中富有价值的运维智能。它使开发者能够直接看到生产环境中的数据,而无需访问生产机器,能够协助用户进行DevOps过程,包括持续的集成和资源配置。
对于交付网络式服务的云初创企业来说,可观察性带来了全新的活力。而对于传统IT运维商来说,尤其是大型企业,可观察性的实现依然需要突破阻力。作为传统监测的补充,可观察性标志着IT运维和软件服务交付的一个新时代的到来,助力企业实现真正的商业和技术融合。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。