Splunk中国区总经理严立忠
如今,无论是从事IT运维、敏捷开发,还是DevOps(开发运营),甚至站点可靠性的工程师们(SRE),都在不断提及一个概念——可观察性(Observability)。为什么他们都在关注可观察性?可观察性在IT领域有哪些深层的含义?在开始探讨这些问题之前,我们需要先了解可观察性到底是什么?
理论上来讲,可观察性是从外部输出知识中推断所获得,可理解为衡量一个系统内部状态的方法。如同IT领域的众多新概念(比如DevOps), 可观察性第一次被提出是在工业领域。当时的可观察性被描述成为一种系统的外部监测属性,比如设备操作者可以查看系统中隐藏的各个流程。
举个例子,水处理厂的操作员如果无法看到水管的内部状况,就无法监测到水的正常流动,流动的方式,以及水质的干净程度。但在管道内可以添加可观察性的工具——流量计和传感器后,状况就截然不同,这些工具将通过遥测连接到仪表板,帮助操作员能够完全掌握管道中水流的情况,并及时根据状况进行调整,大大提高了工作效率。
可观察性也已被快速地引入到 IT 领域,并广泛应用于软件服务行业。尤其是在软件开发工程师编写代码的时候,所使用是就是具有可观察性的测量和遥测应用程序。它可以帮助运维团队获得:
随着AI技术的涌现,企业要想获得商业的成功,只靠新的数据、图表、KPI或者项目仪表盘是远远不够的。可观察性才是企业获得真正商业价值的“抓手”。企业无论在面对实时问题还是事件分类,关闭DevOps反馈回路亦或提前预防问题,都要收集可观察性的数据,并与其它监测的数据一起进行分析处理,并运用机器学习的方式生成自动响应,那么将监测与可观察性、机器学习和预测分析的高级数据集合后,则就拥有了Gartner所定义的“AIOps”,即在AI时代,让IT运维具备机器学习和算法的能力。
当AIOps有了可观察性数据后,可帮助企业:
DevOps中一个重要的概念是强调研发与运维的无缝配合形成一个整体,能给企业带来更大的业务灵活性,使企业能够更快地响应客户行为、市场变化和新技术。而可观察性带来了企业团队文化的转变,在可观察性的语境下,研发是主体,需要主动考虑如何将应用的关键指标以什么形式暴露出去;而之前大部分研发只有在应用出现故障的时候,才会考虑在什么位置加个日志,将研发与运维真正协作统一。
作为一个运维智能平台,Splunk是机器数据的引擎。Splunk通过监控和分析客户的点击流、交易数据、信息安全事件和网络活动,Splunk帮助客户获得机器生成数据中富有价值的运维智能。它使开发者能够直接看到生产环境中的数据,而无需访问生产机器,能够协助用户进行DevOps过程,包括持续的集成和资源配置。
对于交付网络式服务的云初创企业来说,可观察性带来了全新的活力。而对于传统IT运维商来说,尤其是大型企业,可观察性的实现依然需要突破阻力。作为传统监测的补充,可观察性标志着IT运维和软件服务交付的一个新时代的到来,助力企业实现真正的商业和技术融合。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。