至顶网服务器频道 06月26日 新闻消息(文/刘新萍): 6月25日,2018年国际超级计算机大会(ISC)在法兰克福盛大召开,在最能体现厂商整体实力的全球高性能计算TOP 500榜单中,联想以117套的份额成为首家在该榜单中问鼎全球第一的中国厂商。同时,这也意味着联想已经成为全球最大的TOP500超算平台提供商,约每四套系统中就有一套来自联想的解决方案(23.4%)。
联想数据中心业务集团总裁Kirk Skaugen表示:"去年,我们设定了一个目标,即到2020年成为全球最大的TOP500超算系统提供商。现在,我们提前两年实现了这一目标。我们始终以客户满意度为最高要求,致力于提供尖端创新的产品和性能,旨在成为全球最值得信赖的数据中心合作伙伴。这一成绩是对我们不懈努力的最好证明。每一天,科学家们的突破性研究都在不断激励着我们,推动我们共同努力解决人类面临的最严峻挑战。"
联想的高性能计算客户群广泛多样。目前,全球排名前25位的研究型大学和机构中,有17家正采用联想全面的HPC和AI解决方案来进行研究。此外,联想还在全球160多个国家开展众多领域的突破性研究,这些领域包括癌症、大脑研究、天体物理学、人工智能、气候科学、化学、生物学、汽车和航空等等。
联想的创新型超级计算机系统设计及其支持的研究示例包括:
• 中国:北京大学 - 中国第一台使用联想DTN(Direct to Node)温水水冷技术的超级计算机;科学家们正在使用联想系统进行世界领先的生命科学和遗传学研究。
• 意大利:CINECA - 意大利最大的计算中心;Marconi超级计算机是世界上速度最快的节能型超级计算机之一;研究项目范围从精密医学到自动驾驶汽车,非常广泛。
• 加拿大:SciNet - 加拿大最强大的超级计算机Niagara的所在地;同类产品中最先利用蜻蜓型拓扑;研究人员可以获得3 petaflops的处理能力,帮助他们了解气候变化对海洋环流的影响。
• 德国:Leibniz-Rechenzentrum(LRZ) - 德国慕尼黑超级计算中心;联想的DTN(Direct to Node)温水散热技术已经将设备能耗降低了40%;科学家进行地震和海啸模拟,以更好地预测未来的自然灾害。
• 西班牙:巴塞罗那超级计算中心 - 西班牙最大的超级计算机;被DatacenterDynamics评选为"全球最美数据中心";科学家们正在使用人工智能模型来改善视网膜疾病的检测。
• 印度:液态推进系统中心(LPSC) - 研究和发展中心隶属于印度空间研究组织;使用联想的DTN(Direct to Node)温水散热技术来开发下一代地球至轨道技术。
• 丹麦:VESTAS - 丹麦最大的超级计算机;HPCwire"读者选出的高性能数据分析最佳使用奖"获得者;Vestas致力于通过收集和分析数据,帮助客户选择风力发电设备的最佳场所,从而提高风能生产的效率。
联想数据中心业务集团总裁兼HPC和AI部门总经理Madhu Matta表示:"联想拥有行业领先的能力,能够实现最大规模和最高性能的深度创新,与客户合作设计满足其计算能力需求的超级计算系统。这种灵活性和客户至上的态度,使我们能够在高性能计算和人工智能市场的未来发展中保持良好的势头。"
为了进一步帮助客户提高性能,同时降低电力消耗,本周在国际超级计算大会上,联想还宣布推出了Neptune。这是其针对液体冷却技术的全面三重方法。Neptune包含了该公司的整套液体冷却技术,其中包括联想的Direct to Node(DTN)温水散热、后门热交换器(RDHX)和混合传热模块(TTM)解决方案,这些解决方案结合了空气和液体冷却技术,能够为HPC、AI和企业客户带来卓越性能。
好文章,需要你的鼓励
OpenAI 本周为 ChatGPT 添加了 AI 图像生成功能,用户可直接在对话中创建图像。由于使用量激增,CEO Sam Altman 表示公司的 GPU "正在融化",不得不临时限制使用频率。新功能支持工作相关图像创建,如信息图表等,但在图像编辑精确度等方面仍存在限制。值得注意的是,大量用户正在使用该功能创作吉卜力动画风格的图像。
Synopsys 近期推出了一系列基于 AMD 最新芯片的硬件辅助验证和虚拟原型设计工具,包括 HAPS-200 原型系统和 ZeBu-200 仿真系统,以及面向 Arm 硬件的 Virtualizer 原生执行套件。这些创新工具显著提升了芯片设计和软件开发的效率,有助于加快产品上市速度,满足当前 AI 时代下快速迭代的需求。
人工智能正在深刻改变企业客户关系管理 (CRM) 的方方面面。从销售自动化、营销内容生成到客服智能化,AI不仅提升了运营效率,还带来了全新的服务模式。特别是自主代理AI (Agentic AI) 的出现,有望在多渠道无缝接管客户服务职能,开创CRM发展新纪元。
数据孤岛长期困扰着组织,影响着人工智能的可靠性。它们导致信息分散、模型训练不完整、洞察力不一致。解决方案包括实施强大的数据治理、促进跨部门协作、采用现代数据集成技术等。克服数据孤岛对于充分发挥AI潜力至关重要。