至顶网服务器频道 06月26日 新闻消息(文/刘新萍): 6月25日,2018年国际超级计算机大会(ISC)在法兰克福盛大召开,在最能体现厂商整体实力的全球高性能计算TOP 500榜单中,联想以117套的份额成为首家在该榜单中问鼎全球第一的中国厂商。同时,这也意味着联想已经成为全球最大的TOP500超算平台提供商,约每四套系统中就有一套来自联想的解决方案(23.4%)。
联想数据中心业务集团总裁Kirk Skaugen表示:"去年,我们设定了一个目标,即到2020年成为全球最大的TOP500超算系统提供商。现在,我们提前两年实现了这一目标。我们始终以客户满意度为最高要求,致力于提供尖端创新的产品和性能,旨在成为全球最值得信赖的数据中心合作伙伴。这一成绩是对我们不懈努力的最好证明。每一天,科学家们的突破性研究都在不断激励着我们,推动我们共同努力解决人类面临的最严峻挑战。"
联想的高性能计算客户群广泛多样。目前,全球排名前25位的研究型大学和机构中,有17家正采用联想全面的HPC和AI解决方案来进行研究。此外,联想还在全球160多个国家开展众多领域的突破性研究,这些领域包括癌症、大脑研究、天体物理学、人工智能、气候科学、化学、生物学、汽车和航空等等。
联想的创新型超级计算机系统设计及其支持的研究示例包括:
• 中国:北京大学 - 中国第一台使用联想DTN(Direct to Node)温水水冷技术的超级计算机;科学家们正在使用联想系统进行世界领先的生命科学和遗传学研究。
• 意大利:CINECA - 意大利最大的计算中心;Marconi超级计算机是世界上速度最快的节能型超级计算机之一;研究项目范围从精密医学到自动驾驶汽车,非常广泛。
• 加拿大:SciNet - 加拿大最强大的超级计算机Niagara的所在地;同类产品中最先利用蜻蜓型拓扑;研究人员可以获得3 petaflops的处理能力,帮助他们了解气候变化对海洋环流的影响。
• 德国:Leibniz-Rechenzentrum(LRZ) - 德国慕尼黑超级计算中心;联想的DTN(Direct to Node)温水散热技术已经将设备能耗降低了40%;科学家进行地震和海啸模拟,以更好地预测未来的自然灾害。
• 西班牙:巴塞罗那超级计算中心 - 西班牙最大的超级计算机;被DatacenterDynamics评选为"全球最美数据中心";科学家们正在使用人工智能模型来改善视网膜疾病的检测。
• 印度:液态推进系统中心(LPSC) - 研究和发展中心隶属于印度空间研究组织;使用联想的DTN(Direct to Node)温水散热技术来开发下一代地球至轨道技术。
• 丹麦:VESTAS - 丹麦最大的超级计算机;HPCwire"读者选出的高性能数据分析最佳使用奖"获得者;Vestas致力于通过收集和分析数据,帮助客户选择风力发电设备的最佳场所,从而提高风能生产的效率。
联想数据中心业务集团总裁兼HPC和AI部门总经理Madhu Matta表示:"联想拥有行业领先的能力,能够实现最大规模和最高性能的深度创新,与客户合作设计满足其计算能力需求的超级计算系统。这种灵活性和客户至上的态度,使我们能够在高性能计算和人工智能市场的未来发展中保持良好的势头。"
为了进一步帮助客户提高性能,同时降低电力消耗,本周在国际超级计算大会上,联想还宣布推出了Neptune。这是其针对液体冷却技术的全面三重方法。Neptune包含了该公司的整套液体冷却技术,其中包括联想的Direct to Node(DTN)温水散热、后门热交换器(RDHX)和混合传热模块(TTM)解决方案,这些解决方案结合了空气和液体冷却技术,能够为HPC、AI和企业客户带来卓越性能。
好文章,需要你的鼓励
文章探讨了CIO在2025年应该重点投资的五个AI领域:可信工作流的代理AI、智能文档管理、营销客户数据需求、从数据驱动转向AI驱动、重新审视IT架构以支持AI目标。这些投资可以在短期内带来效益,同时成为长期财务回报的倍增器。CIO需要在这些领域制定务实的AI应用策略,简化平台,加强风险管理,以应对未来的挑战和机遇。
Instabase 公司完成 1 亿美元 D 轮融资,估值 12.4 亿美元。该公司提供非结构化数据处理平台,可从多种文件中提取信息并标准化。新资金将用于增强数据提取、分析和搜索功能,以满足企业 AI 需求。
人工智能在建筑设计领域正展现出惊人潜力。从生成令人赏心悦目的建筑效果图,到创造无限游戏世界,AI 正逐步改变设计流程。尽管人类仍是核心创作者,但 AI 辅助工具正迅速普及,未来可能会大幅提升设计效率和质量。这一趋势引发了对 AI 取代人类建筑师的担忧,也带来了硬件革命和地缘政治影响。
研究显示,高收入公司的CEO正将人工智能置于业务战略的核心地位。欧美企业声称已具备AI项目的基础条件。专家建议避免过度乐观,关注投资回报,构建稳健的数据基础,并优先考虑循序渐进的推广策略。研究还发现,最成功的公司往往是那些高层领导有意识地不直接参与AI战略制定的公司。