为了在人工智能和高性能计算领域保持领先水平,Nvidia在本周二晚些时候推出了一个新的计算架构,并声称将统一人工智能和高性能计算这两个快速增长的领域。
Nvidia公司首席执行官黄仁勋在台湾台北举行的GPU Technology Conference(GTC)大会上宣布推出了HGX-2云服务器平台(如图所示),针对很多结合了人工智能和高性能计算的新应用。
“我们相信未来需要一个统一的平台用于人工智能和高性能计算,”Nvidia加速计算部产品营销经理Paresh Kharya在周二的新闻发布会上这样表示。
其他人表示认同。“我认为人工智能将使高性能计算发生革命性的变化,”Moor Insights&Strategy高级分析师Karl Freund这样表示。“我估计很多超级计算中心都会部署HGX2,因为它可以为高性能计算和人工智能增加巨大的计算能力。”
更具体地说,这种新的架构可以实现包括科学计算和模拟(如天气预报)在内的各种应用,以及人工智能模型(如深度学习神经网络)的训练和运行,用于诸如图像和语音识别以及自驾汽车导航等任务。Kharya说:“这些模型正在以前所未有的速度更新,”有时甚至是每小时更新一次。
由Nvidia GPU提供动力的HGX架构是一种数据中心设备,用于微软的Project Olympus项目、Facebook的Big Basin系统、Nvidia自己的DGX-1 AI超级计算机、以及公有云计算领导者AWS的服务中。该架构的第一个版本HGX-1是在一年前推出的。
HGX-2包含16个Nvidia高端V100 GPU,为计算机制造商提供了打造系统的基本构建块。Nvidia表示,使用Nvidia NVLink芯片互连系统让这16个GPU看起来就像一个整体,提供2 petaflops的浮点运算性能。
“基本上你可以将HGX用作16个GPU组成的池,就像是一个非常大的计算资源,”Freund解释说。
Nvidia也表示,最近推出的DGX-2 AI超级计算机是第一个使用HGX-2的系统。它将在第三季度销售,售价为399,000美元。黄仁勋在主题演讲中开玩笑说,它有“很大的价值”。
Nvidia已经打造了三类服务器,这些服务器将CPU与GPU混合用于人工智能训练、人工智能推理、模型运行、以及超级计算的优化配置。
Kharya将HGX架构定位为类似于英特尔和微软开发的ATX个人电脑主板配置标准,后者导致许多公司制造兼容系统组件的爆炸式增长。
周二宣布计划推出支持HGX-2的服务器制造商包括联想、QTC、超微、Wiwynn公司。另外,所ODM厂商商鸿海精密工业公司(Foxconn)、英业达(Inventec)、广达电脑(Quanta Computer)和纬创公司(Wistron),全球一些最大的云数据中心都在使用他们的系统。他们称将在今年晚些时候推出HGX-2系统。
与此同时,英特尔正加紧扩大在人工智能计算方面的业务,上周预览了一款新型芯片,预计在2019年晚些时候发布该芯片。英特尔表示,该芯片旨在更快地构建人工智能模型。英特尔人工智能集团负责人Naveen Rao抨击了Nvidia,称关于GPU比英特尔最新至强处理器快得多的说法是一个“神话”。
好文章,需要你的鼓励
研究人员基于Meta前首席AI科学家Yann LeCun提出的联合嵌入预测架构,开发了名为JETS的自监督时间序列基础模型。该模型能够处理不规则的可穿戴设备数据,通过学习预测缺失数据的含义而非数据本身,成功检测多种疾病。在高血压检测中AUROC达86.8%,心房扑动检测达70.5%。研究显示即使只有15%的参与者有标注医疗记录,该模型仍能有效利用85%的未标注数据进行训练,为利用不完整健康数据提供了新思路。
西湖大学等机构联合发布TwinFlow技术,通过创新的"双轨道"设计实现AI图像生成的革命性突破。该技术让原本需要40-100步的图像生成过程缩短到仅需1步,速度提升100倍且质量几乎无损。TwinFlow采用自我对抗机制,无需额外辅助模型,成功应用于200亿参数超大模型,在GenEval等标准测试中表现卓越,为实时AI图像生成应用开辟了广阔前景。
AI云基础设施提供商Coreweave今年经历了起伏。3月份IPO未达预期,10月收购Core Scientific计划因股东反对而搁浅。CEO Michael Intrator为公司表现辩护,称正在创建云计算新商业模式。面对股价波动和高负债质疑,他表示这是颠覆性创新的必然过程。公司从加密货币挖矿转型为AI基础设施提供商,与微软、OpenAI等巨头合作。对于AI行业循环投资批评,Intrator认为这是应对供需剧变的合作方式。
中山大学等机构联合开发的RealGen框架成功解决了AI生成图像的"塑料感"问题。该技术通过"探测器奖励"机制,让AI在躲避图像检测器识别的过程中学会制作更逼真照片。实验显示,RealGen在逼真度评测中大幅领先现有模型,在与真实照片对比中胜率接近50%,为AI图像生成技术带来重要突破。