为了在人工智能和高性能计算领域保持领先水平,Nvidia在本周二晚些时候推出了一个新的计算架构,并声称将统一人工智能和高性能计算这两个快速增长的领域。
Nvidia公司首席执行官黄仁勋在台湾台北举行的GPU Technology Conference(GTC)大会上宣布推出了HGX-2云服务器平台(如图所示),针对很多结合了人工智能和高性能计算的新应用。
“我们相信未来需要一个统一的平台用于人工智能和高性能计算,”Nvidia加速计算部产品营销经理Paresh Kharya在周二的新闻发布会上这样表示。
其他人表示认同。“我认为人工智能将使高性能计算发生革命性的变化,”Moor Insights&Strategy高级分析师Karl Freund这样表示。“我估计很多超级计算中心都会部署HGX2,因为它可以为高性能计算和人工智能增加巨大的计算能力。”
更具体地说,这种新的架构可以实现包括科学计算和模拟(如天气预报)在内的各种应用,以及人工智能模型(如深度学习神经网络)的训练和运行,用于诸如图像和语音识别以及自驾汽车导航等任务。Kharya说:“这些模型正在以前所未有的速度更新,”有时甚至是每小时更新一次。
由Nvidia GPU提供动力的HGX架构是一种数据中心设备,用于微软的Project Olympus项目、Facebook的Big Basin系统、Nvidia自己的DGX-1 AI超级计算机、以及公有云计算领导者AWS的服务中。该架构的第一个版本HGX-1是在一年前推出的。
HGX-2包含16个Nvidia高端V100 GPU,为计算机制造商提供了打造系统的基本构建块。Nvidia表示,使用Nvidia NVLink芯片互连系统让这16个GPU看起来就像一个整体,提供2 petaflops的浮点运算性能。
“基本上你可以将HGX用作16个GPU组成的池,就像是一个非常大的计算资源,”Freund解释说。
Nvidia也表示,最近推出的DGX-2 AI超级计算机是第一个使用HGX-2的系统。它将在第三季度销售,售价为399,000美元。黄仁勋在主题演讲中开玩笑说,它有“很大的价值”。
Nvidia已经打造了三类服务器,这些服务器将CPU与GPU混合用于人工智能训练、人工智能推理、模型运行、以及超级计算的优化配置。
Kharya将HGX架构定位为类似于英特尔和微软开发的ATX个人电脑主板配置标准,后者导致许多公司制造兼容系统组件的爆炸式增长。
周二宣布计划推出支持HGX-2的服务器制造商包括联想、QTC、超微、Wiwynn公司。另外,所ODM厂商商鸿海精密工业公司(Foxconn)、英业达(Inventec)、广达电脑(Quanta Computer)和纬创公司(Wistron),全球一些最大的云数据中心都在使用他们的系统。他们称将在今年晚些时候推出HGX-2系统。
与此同时,英特尔正加紧扩大在人工智能计算方面的业务,上周预览了一款新型芯片,预计在2019年晚些时候发布该芯片。英特尔表示,该芯片旨在更快地构建人工智能模型。英特尔人工智能集团负责人Naveen Rao抨击了Nvidia,称关于GPU比英特尔最新至强处理器快得多的说法是一个“神话”。
好文章,需要你的鼓励
微软近年来频繁出现技术故障和服务中断,从Windows更新删除用户文件到Azure云服务因配置错误而崩溃,质量控制问题愈发突出。2014年公司大幅裁减测试团队后,采用敏捷开发模式替代传统测试方法,但结果并不理想。虽然Windows生态系统庞大复杂,某些问题在所难免,但Azure作为微软核心云服务,反复因配置变更导致客户服务中断,已不仅仅是质量控制问题,更是对公司技术能力的质疑。
Meta研究团队发现仅仅改变AI示例间的分隔符号就能导致模型性能产生高达45%的巨大差异,甚至可以操纵AI排行榜排名。这个看似微不足道的格式选择问题普遍存在于所有主流AI模型中,包括最先进的GPT-4o,揭示了当前AI评测体系的根本性缺陷。研究提出通过明确说明分隔符类型等方法可以部分缓解这一问题。
当团队准备部署大语言模型时,面临开源与闭源的选择。专家讨论显示,美国在开源AI领域相对落后,而中国有更多开源模型。开源系统建立在信任基础上,需要开放数据、模型架构和参数。然而,即使是被称为"开源"的DeepSeek也并非完全开源。企业客户往往倾向于闭源系统,但开源权重模型仍能提供基础设施选择自由。AI主权成为国家安全考量,各国希望控制本地化AI发展命运。
香港中文大学研究团队开发出CALM训练框架和STORM模型,通过轻量化干预方式让40亿参数小模型在优化建模任务上达到6710亿参数大模型的性能。该方法保护模型原生推理能力,仅修改2.6%内容就实现显著提升,为AI优化建模应用大幅降低了技术门槛和成本。