为了在人工智能和高性能计算领域保持领先水平,Nvidia在本周二晚些时候推出了一个新的计算架构,并声称将统一人工智能和高性能计算这两个快速增长的领域。
Nvidia公司首席执行官黄仁勋在台湾台北举行的GPU Technology Conference(GTC)大会上宣布推出了HGX-2云服务器平台(如图所示),针对很多结合了人工智能和高性能计算的新应用。
“我们相信未来需要一个统一的平台用于人工智能和高性能计算,”Nvidia加速计算部产品营销经理Paresh Kharya在周二的新闻发布会上这样表示。
其他人表示认同。“我认为人工智能将使高性能计算发生革命性的变化,”Moor Insights&Strategy高级分析师Karl Freund这样表示。“我估计很多超级计算中心都会部署HGX2,因为它可以为高性能计算和人工智能增加巨大的计算能力。”
更具体地说,这种新的架构可以实现包括科学计算和模拟(如天气预报)在内的各种应用,以及人工智能模型(如深度学习神经网络)的训练和运行,用于诸如图像和语音识别以及自驾汽车导航等任务。Kharya说:“这些模型正在以前所未有的速度更新,”有时甚至是每小时更新一次。
由Nvidia GPU提供动力的HGX架构是一种数据中心设备,用于微软的Project Olympus项目、Facebook的Big Basin系统、Nvidia自己的DGX-1 AI超级计算机、以及公有云计算领导者AWS的服务中。该架构的第一个版本HGX-1是在一年前推出的。
HGX-2包含16个Nvidia高端V100 GPU,为计算机制造商提供了打造系统的基本构建块。Nvidia表示,使用Nvidia NVLink芯片互连系统让这16个GPU看起来就像一个整体,提供2 petaflops的浮点运算性能。
“基本上你可以将HGX用作16个GPU组成的池,就像是一个非常大的计算资源,”Freund解释说。
Nvidia也表示,最近推出的DGX-2 AI超级计算机是第一个使用HGX-2的系统。它将在第三季度销售,售价为399,000美元。黄仁勋在主题演讲中开玩笑说,它有“很大的价值”。
Nvidia已经打造了三类服务器,这些服务器将CPU与GPU混合用于人工智能训练、人工智能推理、模型运行、以及超级计算的优化配置。
Kharya将HGX架构定位为类似于英特尔和微软开发的ATX个人电脑主板配置标准,后者导致许多公司制造兼容系统组件的爆炸式增长。
周二宣布计划推出支持HGX-2的服务器制造商包括联想、QTC、超微、Wiwynn公司。另外,所ODM厂商商鸿海精密工业公司(Foxconn)、英业达(Inventec)、广达电脑(Quanta Computer)和纬创公司(Wistron),全球一些最大的云数据中心都在使用他们的系统。他们称将在今年晚些时候推出HGX-2系统。
与此同时,英特尔正加紧扩大在人工智能计算方面的业务,上周预览了一款新型芯片,预计在2019年晚些时候发布该芯片。英特尔表示,该芯片旨在更快地构建人工智能模型。英特尔人工智能集团负责人Naveen Rao抨击了Nvidia,称关于GPU比英特尔最新至强处理器快得多的说法是一个“神话”。
好文章,需要你的鼓励
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
医疗信息管理平台Predoc宣布获得3000万美元新融资,用于扩大运营规模并在肿瘤科、研究网络和虚拟医疗提供商中推广应用。该公司成立于2022年,利用人工智能技术提供端到端平台服务,自动化病历检索并整合为可操作的临床洞察。平台可实现病历检索速度提升75%,临床审查时间减少70%,旨在增强而非替代临床判断。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。