这似乎是专有人工智能芯片爆发的一周,Google宣布其公有云将支持人工智能芯片,Amazon表示正在开发自己的人工智能芯片。这一趋势还在继续,英国半导体巨头ARM今日宣布代号为Project Trillium的机器学习计划。
Project Trillium将包括一系列特别设计的处理器,以适应机器学习和神经网络所需的计算类型。ARM表示,该项目首先将重点放在移动芯片上,但同时补充说,Trillium的高度可扩展性最终将提供“提升或降低性能曲线的能力”。
据ARM称,Project Trillium的机器学习处理器将让移动设备和智能设备提升到一个新的高度。
ARM公司IP产品部门总裁Rene Haas表示:“人工智能向边缘设备的加速发展,提高了对解决计算、同时保持能效的创新要求。新设备将需要这些新处理器提供的高性能机器学习和人工智能。再加上我们平台提供的高度灵活性和可扩展性,我们的合作伙伴将能够推动跨越广泛设备的边界。”
AMR表示,其ARM ML处理器每秒可处理超过4.6万亿次操作,同时能耗非常低,这对于很多最关注电池寿命的移动设备用户来说非常重要。Project Trillium还包括ARM OD,这是一种物体检测芯片,它使用设备的摄像头实时识别人和物体。ARM指出,这两款芯片可以共同提供“高性能、高能效的人检测和识别解决方案”。对于普通人来说,这可以实现更好的人脸识别功能和增强现实体验。
ARM机器学习副总裁、机器学习总经理Jem Davies表示,这款新芯片的速度和能效使其了应对“最具挑战性的日常机器学习任务”。
Davies在一篇博客文章中写道:“它在现实世界使用的时候性能可能会更高。”他拿支持AR功能的潜水面罩作为该芯片的使用案例。“这意味着使用ARM ML处理器的设备将能够独立于云执行机器学习。这对于潜水面罩等产品来说显然非常重要,对于任何不能依赖稳定的互联网连接的自动驾驶汽车等设备也同样重要。”
他补充说:“我们现在有一个可以扩展到任何设备的机器学习处理器架构,因此它更多的是在市场需要的时候为市场提供所需的产品。这为我们和我们的生态系统合作伙伴提供了对任何机会做出反应的速度和敏捷性。”
ARM表示,Project Trillium只是其新计划的代号,随后将会宣布其新系列芯片的商业品牌名称。ARM将在4月份提供该芯片的早期预览,并计划在2018年年中前全面推出。
Moor Insights&Strategy总裁兼首席分析师Patrick Moorhead表示:“ARM是大多数智能手机、平板电脑和物联网终端的核心,因此ARM能够增加机器学习在行业中的应用范围。英特尔、高通、Nvidia和Xilinx之间竞争激烈,ARM希望在整体解决方案、可扩展性和每瓦性能方面脱颖而出。”
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。