这似乎是专有人工智能芯片爆发的一周,Google宣布其公有云将支持人工智能芯片,Amazon表示正在开发自己的人工智能芯片。这一趋势还在继续,英国半导体巨头ARM今日宣布代号为Project Trillium的机器学习计划。
Project Trillium将包括一系列特别设计的处理器,以适应机器学习和神经网络所需的计算类型。ARM表示,该项目首先将重点放在移动芯片上,但同时补充说,Trillium的高度可扩展性最终将提供“提升或降低性能曲线的能力”。
据ARM称,Project Trillium的机器学习处理器将让移动设备和智能设备提升到一个新的高度。
ARM公司IP产品部门总裁Rene Haas表示:“人工智能向边缘设备的加速发展,提高了对解决计算、同时保持能效的创新要求。新设备将需要这些新处理器提供的高性能机器学习和人工智能。再加上我们平台提供的高度灵活性和可扩展性,我们的合作伙伴将能够推动跨越广泛设备的边界。”
AMR表示,其ARM ML处理器每秒可处理超过4.6万亿次操作,同时能耗非常低,这对于很多最关注电池寿命的移动设备用户来说非常重要。Project Trillium还包括ARM OD,这是一种物体检测芯片,它使用设备的摄像头实时识别人和物体。ARM指出,这两款芯片可以共同提供“高性能、高能效的人检测和识别解决方案”。对于普通人来说,这可以实现更好的人脸识别功能和增强现实体验。
ARM机器学习副总裁、机器学习总经理Jem Davies表示,这款新芯片的速度和能效使其了应对“最具挑战性的日常机器学习任务”。
Davies在一篇博客文章中写道:“它在现实世界使用的时候性能可能会更高。”他拿支持AR功能的潜水面罩作为该芯片的使用案例。“这意味着使用ARM ML处理器的设备将能够独立于云执行机器学习。这对于潜水面罩等产品来说显然非常重要,对于任何不能依赖稳定的互联网连接的自动驾驶汽车等设备也同样重要。”
他补充说:“我们现在有一个可以扩展到任何设备的机器学习处理器架构,因此它更多的是在市场需要的时候为市场提供所需的产品。这为我们和我们的生态系统合作伙伴提供了对任何机会做出反应的速度和敏捷性。”
ARM表示,Project Trillium只是其新计划的代号,随后将会宣布其新系列芯片的商业品牌名称。ARM将在4月份提供该芯片的早期预览,并计划在2018年年中前全面推出。
Moor Insights&Strategy总裁兼首席分析师Patrick Moorhead表示:“ARM是大多数智能手机、平板电脑和物联网终端的核心,因此ARM能够增加机器学习在行业中的应用范围。英特尔、高通、Nvidia和Xilinx之间竞争激烈,ARM希望在整体解决方案、可扩展性和每瓦性能方面脱颖而出。”
好文章,需要你的鼓励
Roig Arena 将于 2025 年 9 月在瓦伦西亚开业,借助 Extreme Networks 的 6GHz Wi-Fi 与数据分析技术,实现无缝运营与个性化观众体验,打造全天候活动中心。
这项研究首次系统研究了大语言模型在表达不确定性时的"忠实度"问题,发现它们往往在不确定时仍使用肯定语言,导致用户过度信任。研究团队提出了MetaFaith方法,通过激发模型的"元认知"能力,使其能更诚实地表达不确定性。在14种模型和10个数据集的测试中,MetaFaith将忠实度提升了高达61%,且83%的情况下被人类评为更可靠。这一突破对构建更值得信任的AI系统具有重要意义。
OpenMamba 是一款意大利独立滚动更新的 Linux 发行版,基于 Fedora 工具构建,提供 KDE Plasma 与 LXQt 桌面。它采用最新组件和标准打包工具,运行稳定且易用,适合规避主流系统限制的用户。
这项研究提出了强化蒸馏(REDI)框架,创新性地利用大型语言模型生成的正确和错误推理过程进行训练。传统方法仅使用正确样本,浪费了包含宝贵信息的错误样本。REDI采用两阶段方法:先用正确样本建立基础,再通过非对称加权的目标函数利用错误样本进一步优化。实验表明,仅用131k个公开数据样本训练的Qwen-REDI-1.5B模型在MATH-500等基准上达到83.1%准确率,与使用800k专有数据训练的同类模型相当或更优,为小型模型离线学习复杂推理能力提供了高效途径。