这似乎是专有人工智能芯片爆发的一周,Google宣布其公有云将支持人工智能芯片,Amazon表示正在开发自己的人工智能芯片。这一趋势还在继续,英国半导体巨头ARM今日宣布代号为Project Trillium的机器学习计划。
Project Trillium将包括一系列特别设计的处理器,以适应机器学习和神经网络所需的计算类型。ARM表示,该项目首先将重点放在移动芯片上,但同时补充说,Trillium的高度可扩展性最终将提供“提升或降低性能曲线的能力”。
据ARM称,Project Trillium的机器学习处理器将让移动设备和智能设备提升到一个新的高度。
ARM公司IP产品部门总裁Rene Haas表示:“人工智能向边缘设备的加速发展,提高了对解决计算、同时保持能效的创新要求。新设备将需要这些新处理器提供的高性能机器学习和人工智能。再加上我们平台提供的高度灵活性和可扩展性,我们的合作伙伴将能够推动跨越广泛设备的边界。”
AMR表示,其ARM ML处理器每秒可处理超过4.6万亿次操作,同时能耗非常低,这对于很多最关注电池寿命的移动设备用户来说非常重要。Project Trillium还包括ARM OD,这是一种物体检测芯片,它使用设备的摄像头实时识别人和物体。ARM指出,这两款芯片可以共同提供“高性能、高能效的人检测和识别解决方案”。对于普通人来说,这可以实现更好的人脸识别功能和增强现实体验。
ARM机器学习副总裁、机器学习总经理Jem Davies表示,这款新芯片的速度和能效使其了应对“最具挑战性的日常机器学习任务”。
Davies在一篇博客文章中写道:“它在现实世界使用的时候性能可能会更高。”他拿支持AR功能的潜水面罩作为该芯片的使用案例。“这意味着使用ARM ML处理器的设备将能够独立于云执行机器学习。这对于潜水面罩等产品来说显然非常重要,对于任何不能依赖稳定的互联网连接的自动驾驶汽车等设备也同样重要。”
他补充说:“我们现在有一个可以扩展到任何设备的机器学习处理器架构,因此它更多的是在市场需要的时候为市场提供所需的产品。这为我们和我们的生态系统合作伙伴提供了对任何机会做出反应的速度和敏捷性。”
ARM表示,Project Trillium只是其新计划的代号,随后将会宣布其新系列芯片的商业品牌名称。ARM将在4月份提供该芯片的早期预览,并计划在2018年年中前全面推出。
Moor Insights&Strategy总裁兼首席分析师Patrick Moorhead表示:“ARM是大多数智能手机、平板电脑和物联网终端的核心,因此ARM能够增加机器学习在行业中的应用范围。英特尔、高通、Nvidia和Xilinx之间竞争激烈,ARM希望在整体解决方案、可扩展性和每瓦性能方面脱颖而出。”
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。