光大银行通过分行二级资源池项目将分行所有资源纳入云管理平台统一管理,与前期建设的总行一级资源池,共同形成创新性的总分两级资源池。
为保证分行二级资源池可落地性,匹配分行简化运维、提升可用性和可靠性需求角度考虑,针对分行二级资源池使用的超融合基础架构设备构建IT系统,提升IT系统的资源利用率,经过综合评估后,采用华为融合架构方案构建分行二级资源云。
在项目建设之初,光大银行制定了项目目标,从16年8月起,到12月初完成全国39个站点的实施,实现:
通过分析,项目困难主要集中在:
(1) 时间紧,不到5个月时间,去除国庆、年底封网等,有效时间不足三个月;
(2) 任务重,涉及部全国39个站点,230节点,5000多CPU规模融合架构环境部署,以及现网业务迁移。
(3) 环境复杂,分行网络等基础设施涉及多品牌、多型号,整体差异较大;
(4) 对人员综合技能要求较高,但分行人员水平及数量不一,分行科技人员对华为产品的熟悉程度不尽相同;
为实现项目目标,华为立项为重大项目,联合光大成立联合项目组,建立分层分级沟通机制,紧密配合,制定详细合理进度计划,通过环境调研、规划设计、试点实施、培训、全行推广、数据迁移六大过程,并加强实施过程中的指导和监控,通过进度计划管理、问题风险管理及需求管理的例行进行,保证了项目平稳有序执行及结果可控。
在执行过程中,通过环境调研,考虑安全性、可靠性、可用性、扩展性及可维护性,量身定制合光大的设计方案;通过集中评审对设计方案和投产实施控制表进行检查和评审;制定标准的实施指导文件,针对分行试点部署过程遇到的历史问题进行分析回顾和对比检查进行问题回顾,总结经验并修正文档;对产品及项目情况在实施前进行统一培训,提升分行客户对项目的熟悉度和技术能力;通过供应链预安装配置,实施前网络、机房环境等基础条件的检查,使分行部署简化,提前规避问题;通过制定质量标准,输出测试用例,代表处自检,数据中心项目组验收等手段,充分验证和测试,保证施工效果。
经过联合项目组的共同努力,达成了以下成果:
项目最终按计划完成建设任务,达到建设目标。在整个项目建设过程中,华为公司人员加班加点,充分体现了以客户为中心,艰苦奋斗的精神,得到光大银行人员的一致认可和表扬。
时间就是金钱,效率就是生命,通过华为规范化、专业化的项目管理,组织遍布全国的交付服务资源,使超融合架构以及更多的新型的金融解决方案,能更快、更广的为客户带来便利、降低成本、创造价值。
好文章,需要你的鼓励
南洋理工大学研究团队开发了WorldMem框架,首次让AI拥有真正的长期记忆能力,解决了虚拟世界模拟中的一致性问题。该系统通过记忆银行存储历史场景,并使用智能检索机制,让AI能准确重现之前的场景和事件,即使间隔很长时间。实验显示在Minecraft和真实场景中都表现出色,为游戏、自动驾驶、机器人等领域带来广阔应用前景。
AWS通过升级SageMaker机器学习平台来扩展市场地位,新增观测能力、连接式编码环境和GPU集群性能管理功能。面对谷歌和微软的激烈竞争,AWS专注于为企业提供AI基础设施支撑。SageMaker新功能包括深入洞察模型性能下降原因、为开发者提供更多计算资源控制权,以及支持本地IDE连接部署。这些更新主要源于客户需求,旨在解决AI模型开发中的实际问题。
MTS AI研究团队提出RewardRanker系统,通过重排序模型和迭代自训练显著提升AI代码生成质量。该方法让13.4B参数模型超越33B大模型,在多种编程语言上表现优异,甚至在C++上超越GPT-4。通过引入困难负样本和PPO优化,系统能从多个代码候选中选出最优方案,为AI编程助手的实用化奠定基础。